National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Correlated probe and electron microscopy for the study of modern magnetic nanomaterials
Novotný, Ondřej ; Flajšman, Lukáš (referee) ; Pavera, Michal (advisor)
High pressure on the development of new magnetic materials and their miniaturization also emphasizes the development of new analytical techniques. This diploma thesis deals with the development and demonstration of correlated magnetic force and electron microscopy, which is a promising tool for the characterization of magnetic nanomaterials. The first part of this thesis describes the fundamental physics of micromagnetism with a focus on cylindrical nanofibers. The following pages describe optic, probe, electron, and synchrotron methods for mapping the magnetic properties of materials. The next part describes magnetic domain wall motion in cylindrical nanowires performed as a part of a more extensive material study. The last part of the thesis describes the development of correlated magnetic force and electron microscopy on LiteScope device. A production of magnetic probes was designed and successfully tested. Probes were fabricated by focused electron beam-induced deposition from the Co2(CO)8 precursor. Further, the developed correlated microscopy is demonstrated on a multilayer PtCo sample, magnetic cylindrical nanofibers, NiFe vortex structures, and FeRh metamagnetic nano-islands.
Surface modification by nano-droplets controlled by electron tweezers
Dao, Radek ; Šik, Ondřej (referee) ; Bábor, Petr (advisor)
This master's thesis is focused on the study of the consequences of electron beam induced motion of Au-Ge alloy nanodroplets on germanium surface. The text consists of two parts. The theoretical part gives an overview of measurement and fabrication techniques used for the experiments. The description of these techniques is mainly focused on topics needed to understand the ideas behind the experiments and their results. The topics covered here are the Atomic Force Microscopy, Scanning Electron Microscopy and Electron Beam Lithography. These are followed by an introduction to the gold-germanium material system and the movement of Au-Ge alloy nanodroplets. The practical part gives a roughly chronological guide throughout the whole experimental process, including the search for a suitable sample fabrication method, the surface modification itself and its measurement. Temperature calibration of the heating system is also mentioned.
Correlated probe and electron microscopy for the study of modern magnetic nanomaterials
Novotný, Ondřej ; Flajšman, Lukáš (referee) ; Pavera, Michal (advisor)
High pressure on the development of new magnetic materials and their miniaturization also emphasizes the development of new analytical techniques. This diploma thesis deals with the development and demonstration of correlated magnetic force and electron microscopy, which is a promising tool for the characterization of magnetic nanomaterials. The first part of this thesis describes the fundamental physics of micromagnetism with a focus on cylindrical nanofibers. The following pages describe optic, probe, electron, and synchrotron methods for mapping the magnetic properties of materials. The next part describes magnetic domain wall motion in cylindrical nanowires performed as a part of a more extensive material study. The last part of the thesis describes the development of correlated magnetic force and electron microscopy on LiteScope device. A production of magnetic probes was designed and successfully tested. Probes were fabricated by focused electron beam-induced deposition from the Co2(CO)8 precursor. Further, the developed correlated microscopy is demonstrated on a multilayer PtCo sample, magnetic cylindrical nanofibers, NiFe vortex structures, and FeRh metamagnetic nano-islands.
Surface modification by nano-droplets controlled by electron tweezers
Dao, Radek ; Šik, Ondřej (referee) ; Bábor, Petr (advisor)
This master's thesis is focused on the study of the consequences of electron beam induced motion of Au-Ge alloy nanodroplets on germanium surface. The text consists of two parts. The theoretical part gives an overview of measurement and fabrication techniques used for the experiments. The description of these techniques is mainly focused on topics needed to understand the ideas behind the experiments and their results. The topics covered here are the Atomic Force Microscopy, Scanning Electron Microscopy and Electron Beam Lithography. These are followed by an introduction to the gold-germanium material system and the movement of Au-Ge alloy nanodroplets. The practical part gives a roughly chronological guide throughout the whole experimental process, including the search for a suitable sample fabrication method, the surface modification itself and its measurement. Temperature calibration of the heating system is also mentioned.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.